OSIRIS: A Three-Dimensional, Fully Relativistic Particle in Cell Code for Modeling Plasma Based Accelerators

نویسندگان

  • Ricardo A. Fonseca
  • Luís O. Silva
  • Frank S. Tsung
  • Viktor K. Decyk
  • Wei Lu
  • Chuang Ren
  • Warren B. Mori
  • S. Deng
  • S. Lee
  • Thomas C. Katsouleas
  • J. C. Adam
چکیده

We describe OSIRIS, a three-dimensional, relativistic, massively parallel, object oriented particle-in-cell code for modeling plasma based accelerators. Developed in Fortran 90, the code runs on multiple platforms (Cray T3E, IBM SP, Mac clusters) and can be easily ported to new ones. Details on the code’s capabilities are given. We discuss the object-oriented design of the code, the encapsulation of system dependent code and the parallelization of the algorithms involved. We also discuss the implementation of communications as a boundary condition problem and other key characteristics of the code, such as the moving window, open-space and thermal bath boundaries, arbitrary domain decomposition, 2D (cartesian and cylindric) and 3D simulation modes, electron sub-cycling, energy conservation and particle and field diagnostics. Finally results from three-dimensional simulations of particle and laser wakefield accelerators are presented, in connection with the data analysis and visualization infrastructure developed to post-process the scalar and vector results from PIC simulations.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Interpenetrating Plasma Shells: Near-equipartition Magnetic Field Generation and Non-thermal Particle Acceleration

We present the first three-dimensional fully kinetic electromagnetic relativistic particle-in-cell simulations of the collision of two interpenetrating plasma shells. The highly accurate plasma-kinetic ”particlein-cell” (with the total of 10 particles) parallel code OSIRIS has been used. Our simulations show: (i) the generation of long-lived near-equipartition (electro)magnetic fields, (ii) non...

متن کامل

Modeling of Ionization Physics with the PIC Code OSIRIS

Abstract. When considering intense particle or laser beams propagating in dense plasma or gas, ionization plays an important role. Impact ionization and tunnel ionization may create new plasma electrons, altering the physics of wakefield accelerators, causing blue shifts in laser spectra, creating and modifying instabilities, etc. Here we describe the addition of an impact ionization package in...

متن کامل

A Generic Approach for Developing Highly Scalable Particle-Mesh Codes for GPUs

We present a general framework for GPU-based low-latency data transfer schemes that can be used for a variety of particle-mesh algorithms [8]. This framework allows to hide the latency of the data transfer between GPU-accelerated computing nodes by interleaving it with the kernel execution on the GPU. We discuss as an example the fully relativistic particle-in-cell (PiC) code PIConGPU [5] curre...

متن کامل

High-quality electron beams from beam-driven plasma accelerators by wakefield-induced ionization injection.

We propose a new and simple strategy for controlled ionization-induced trapping of electrons in a beam-driven plasma accelerator. The presented method directly exploits electric wakefields to ionize electrons from a dopant gas and capture them into a well-defined volume of the accelerating and focusing wake phase, leading to high-quality witness bunches. This injection principle is explained by...

متن کامل

Studying near-relativistic collisionless shocks with high-intensity laser- plasma interactions

Collisionless shocks are pervasive in space and astrophysical plasmas and are known to be efficient particle accelerators; however, the microphysics underlying shock formation and particle acceleration is not yet fully understood. The fast progress in laser technology is bringing the study of near-relativistic collisionless shocks into the realm of laboratory plasmas. We use multi-dimensional p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002